
Implementing a Garbage Collector in
a High Level Language using the

OMR GC Framework

Joannah Nanjekye

UNB/IBM

2019, November, 05

Joannah Nanjekye (UNB/IBM) CASCON x Evoke / 2019, November, 05 1 / 31

Outline

1 Overview of Garbage Collection

2 OMR GC Framework

3 Pypy

4 Garbage Collection in Pypy

5 Integrating the OMR Mark and Sweep GC in Pypy

6 Conclusions and Future Work

7 Summary

Joannah Nanjekye (UNB/IBM) CASCON x Evoke / 2019, November, 05 2 / 31

Outline

1 Overview of Garbage Collection

2 OMR GC Framework

3 Pypy

4 Garbage Collection in Pypy

5 Integrating the OMR Mark and Sweep GC in Pypy

6 Conclusions and Future Work

7 Summary

Joannah Nanjekye (UNB/IBM) CASCON x Evoke / 2019, November, 05 3 / 31

Garbage Collection

A way of reclaiming unused memory
automatically i.e., automatic memory
management.

Unused objects are destroyed to give room for
new ones.

In C/C++, use free() and delete() to free
memory.

In garbage collected languages, it is automatic.

Examples include Java, Python, etc.

Joannah Nanjekye (UNB/IBM) CASCON x Evoke / 2019, November, 05 4 / 31

Reuse in Garbage Collection

Need reuse because implementing GC is hard and
time consuming.

Need to abstract GC implementation to allow GC
portability for any runtime.

Reduces need for GC expertise about the nitty
gritty and complex details.

Joannah Nanjekye (UNB/IBM) CASCON x Evoke / 2019, November, 05 5 / 31

Existing Solutions for Reuse in Garbage
Collection

GC-as-a-Service (GaS) Library by Wegiel and
Krintz.

Provides a shared C library.
Moves GC logic into a modular library.
Supports a non-moving GC.

Eclipse OMR GC Framework.

Joannah Nanjekye (UNB/IBM) CASCON x Evoke / 2019, November, 05 6 / 31

Outline

1 Overview of Garbage Collection

2 OMR GC Framework

3 Pypy

4 Garbage Collection in Pypy

5 Integrating the OMR Mark and Sweep GC in Pypy

6 Conclusions and Future Work

7 Summary

Joannah Nanjekye (UNB/IBM) CASCON x Evoke / 2019, November, 05 7 / 31

Eclipse OMR GC Framework

A component of the Eclipse OMR project.

The Eclipse OMR project is a set of open source
C and C++ components for building robust
language runtimes.

The GC framework is a component for
implementing automatic memory management for
any runtime.

It exposes a standard C interface that any
runtime can call to integrate Garbage Collection.

Joannah Nanjekye (UNB/IBM) CASCON x Evoke / 2019, November, 05 8 / 31

Eclipse OMR GC Architecture

Joannah Nanjekye (UNB/IBM) CASCON x Evoke / 2019, November, 05 9 / 31

Outline

1 Overview of Garbage Collection

2 OMR GC Framework

3 Pypy

4 Garbage Collection in Pypy

5 Integrating the OMR Mark and Sweep GC in Pypy

6 Conclusions and Future Work

7 Summary

Joannah Nanjekye (UNB/IBM) CASCON x Evoke / 2019, November, 05 10 / 31

About Pypy

Framework for writing interpreters in Python.

To a layman, it is a Python interpreter
implemented in Python.

Pypy tries to be compatible with CPython as its
reference implementation.

Joannah Nanjekye (UNB/IBM) CASCON x Evoke / 2019, November, 05 11 / 31

Pypy Architecture

Pypy’s Architecture has two components:
Standard Interpreter. An implementation of the
Python programming language mostly compliant with
the current version of the language.
Translation framework. A translation tool-suite
whose goal is to compile subsets of Python(Rpython)
to various environments. Rpython is a subset of the
Python language called “restricted Python”.

Joannah Nanjekye (UNB/IBM) CASCON x Evoke / 2019, November, 05 12 / 31

The Translation Framework

Joannah Nanjekye (UNB/IBM) CASCON x Evoke / 2019, November, 05 13 / 31

Outline

1 Overview of Garbage Collection

2 OMR GC Framework

3 Pypy

4 Garbage Collection in Pypy

5 Integrating the OMR Mark and Sweep GC in Pypy

6 Conclusions and Future Work

7 Summary

Joannah Nanjekye (UNB/IBM) CASCON x Evoke / 2019, November, 05 14 / 31

GCs in Pypy

Each allocation call in the control flow graphs is
replaced with a call to the GC.

There are multiple GCs.

Significant is the minimark which is a
generational GC using mark-sweep for the old
generation.

The default is the incminimark.

An incremental and improved version of
minimark with reduced pause times.

Joannah Nanjekye (UNB/IBM) CASCON x Evoke / 2019, November, 05 15 / 31

Facts about GCs in Pypy

Written in Rpython which assumes automatic
memory management.

The GC is analyzed like any other program
during translation.

Low level calls do not assume automatic memory
management e.g., C code.

The GC needs to support allocation for both
Python visible objects and internal interpreter
objects e.g., list, instances etc.

Joannah Nanjekye (UNB/IBM) CASCON x Evoke / 2019, November, 05 16 / 31

How to integrate a new GC in Pypy

There are two options:
Link an external GC to the
C code produced from the
first transformation.
Write an actual GC coupled
with a transformation.

The GC transformer inserts
a GC in a program being
translated.

Joannah Nanjekye (UNB/IBM) CASCON x Evoke / 2019, November, 05 17 / 31

Outline

1 Overview of Garbage Collection

2 OMR GC Framework

3 Pypy

4 Garbage Collection in Pypy

5 Integrating the OMR Mark and Sweep GC in Pypy

6 Conclusions and Future Work

7 Summary

Joannah Nanjekye (UNB/IBM) CASCON x Evoke / 2019, November, 05 18 / 31

OMR GC Integration in Pypy

We used the second option above i.e.,
implemented an actual GC.

The OMR GC is written in C/C++.

Rpython is like Python, there was need to wrap
the C calls.

RFFI was used for the wrapping.

Joannah Nanjekye (UNB/IBM) CASCON x Evoke / 2019, November, 05 19 / 31

Extracted from omrmarkandsweep.py

eci = ExternalCompilationInfo(

includes = [’malloc.h’],

post_include_bits = [

"PypyAllocateObject(uintptr_t allocSize,

uintptr_t allocateFlags);\n"

],

)

pypy_AllocateObject = rffi.llexternal(

’PypyAllocateObject’,

[rffi.INT, rffi.INT],

rffi.VOIDP, compilation_info=eci)

def omr_allocate(self, size, allocateFlags):

return pypy_AllocateObject(size, allocateFlags)

Joannah Nanjekye (UNB/IBM) CASCON x Evoke / 2019, November, 05 20 / 31

Results - Pypy with Incmiminimark GC

Joannah Nanjekye (UNB/IBM) CASCON x Evoke / 2019, November, 05 20 / 31

Results - Pypy with OMR GC

Joannah Nanjekye (UNB/IBM) CASCON x Evoke / 2019, November, 05 21 / 31

Summary of Results

Not conclusive at all.

Typical case of memory management not
implemented so well, i.e bugs in the GC
implementation.

Runs 0.5x to 5x slower.

Uses 1.5x to 25x more memory.

Joannah Nanjekye (UNB/IBM) CASCON x Evoke / 2019, November, 05 22 / 31

Results - Development Effort

Started in Spring 2019.

I only needed to know what the OMR GC
functions did.

Documentation would have even simplified this
process.

I spent more time figuring out Pypy than OMR.

Joannah Nanjekye (UNB/IBM) CASCON x Evoke / 2019, November, 05 23 / 31

Why the bad Performance

Memory management bugs as this is still work in
progress at the moment.

The incminimark is powerful, its unfair to
compare it with a Mark and Sweep
Implementation.

Wrapper overhead.

RFFI does allocations when making low
level calls. This memory needs to be
managed manually.

Joannah Nanjekye (UNB/IBM) CASCON x Evoke / 2019, November, 05 24 / 31

Why did I use RFFI in the first place

Be as Pythonic as possible.

The Boehm GC integration is older than RFFI.
We needed to know if a higher level integration
was better than this.

It had a promise of a cleaner integration. The
authors of the Boehm GC hacked the translation
framework -which is the usual meta-meta-meta
Pypy programming.

Joannah Nanjekye (UNB/IBM) CASCON x Evoke / 2019, November, 05 25 / 31

Outline

1 Overview of Garbage Collection

2 OMR GC Framework

3 Pypy

4 Garbage Collection in Pypy

5 Integrating the OMR Mark and Sweep GC in Pypy

6 Conclusions and Future Work

7 Summary

Joannah Nanjekye (UNB/IBM) CASCON x Evoke / 2019, November, 05 26 / 31

Conclusion

RFFI does allocations when making low level
calls. This memory needs to be managed
manually.

To reduce wrapper overhead and having to
manage memory manually, hack the translation
tool.
With this option:

Operate at a lower level than RFFI.
Let the GC transformer insert the low level OMR GC
operations.
The code generator can turn these operations into
direct C calls to OMR.

Joannah Nanjekye (UNB/IBM) CASCON x Evoke / 2019, November, 05 27 / 31

Conclusion

We may be able to get some 5 percent
improvements if we integrated a parallel or
concurrent generational GC.

That is if we are talking about the performance
on a machine running i.e., one PyPy process and
nothing else.

Both a concurrent and parallel GC won’t help so
much on a machine that is running at 100 percent
CPU for example running several PyPy processes.

Joannah Nanjekye (UNB/IBM) CASCON x Evoke / 2019, November, 05 28 / 31

Future work

Integrate a generational OMR GC in Pypy.

Ensure the integrated GC gives some benefits to
Pypy.

Joannah Nanjekye (UNB/IBM) CASCON x Evoke / 2019, November, 05 29 / 31

Outline

1 Overview of Garbage Collection

2 OMR GC Framework

3 Pypy

4 Garbage Collection in Pypy

5 Integrating the OMR Mark and Sweep GC in Pypy

6 Conclusions and Future Work

7 Summary

Joannah Nanjekye (UNB/IBM) CASCON x Evoke / 2019, November, 05 30 / 31

Summary

The OMR GC framework allows us to have
reusability when implementing a new GC in a
runtime.

Since it is written in C/C++, there is need to use
an efficient integration strategy in Pypy.

Providing the OMR GC as an external GC after
the first transformation in the Pypy translation
tool will allow to reduce wrapper overhead and
bugs due to manual memory management.

Thank - You

Joannah Nanjekye (UNB/IBM) CASCON x Evoke / 2019, November, 05 31 / 31

	Overview of Garbage Collection
	OMR GC Framework
	Pypy
	Garbage Collection in Pypy
	Integrating the OMR Mark and Sweep GC in Pypy
	Conclusions and Future Work
	Summary

